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ORBITAL APPROXIMATION

• Hartree product (hp) expressed as a product 
of spinorbitals ψι = φiσi

•  φi = space orbital, σi = spin function (α,β)
• Pauli Principle requires antisymmetry:

Ψh p = ψ1(1)ψ2(2)…ψN(N)

Ψ =  ÂΨh p = |ψ1(1)ψ2(2)…ψN(N)|

• Closed Shells:

  
Ψ = |φ1φ 1φ2φ 2φNφ N |



ORBITAL APPROXIMATION

• For more complex species (one or more open 
shells) antisymmetric wavefunction is 
generally expressed as a linear combination of 
Slater determinants

• For example, consider simple excited state 
represented by excitation φi->φa out of closed 
shell:

  Ψ = 2−1/ 2[|φ1φ 1φ2φ 2L φ iφ aL φNφ N | ± |φ1φ 1φ2φ 2L φaφ iL φNφ N |]



• For more complex open shell species (e.g., 
low-spin open shells with multiple partially 
filled orbitals, such as s1d7 Fe) wavefunctions 
are linear combinations of several 
determinants.

• But, the coefficients on these determinants are 
determined by spin and symmetry, not by the 
Variational Principle



HARTREE-FOCK METHOD
• Optimization of the orbitals (minimization of 

the energy with respect to all orbitals), based 
on the Variational Principle) leads to Hartree-
Fock equations (closed shells): 

ˆ F φi = ε iφi

• For open shells, there are multiple Fock 
operators, one for each type of orbital 
occupancy; e.g. UHF: ˆ F α , ˆ F β



LCAO METHOD

• Generally solve HF problem by LCAO 
expansion: expand φi as linear combination of 
basis functions (AOs), χµ:  

• The Cµi are expansion coefficients obtained 
via the Variational Principle
– FC = SCε 
– HFR matrix equation, solved iteratively

φi = χµCµi
µ
∑



MCSCF METHOD

• Hartree-Fock (or DFT) is most common zeroth 
order wavefunction, but

• Many problems are not well represented by 
single configuration wavefunctions:
– Diradicals (broadly defined)
– Excited states
– Transition states (frequently)
– Unsaturated transition metals
– High energy species
– Generally, any system with near degeneracies



• In such cases, the correct zeroth order 
wavefunction is MCSCF:

Φ = AKΨK
K
∑

•  Φ is the MCSCF wavefunction
•  ΨK is a configuration wavefunction

– Can be a single determinant
– Could be a linear combination of 

determinants in order to be spin-correct
– Generally called configuration state function 

(CSF), meaning spin-correct, symmetry- 
correct configuration wavefunction



Φ = AKΨK
K
∑

• Generally, two approaches to treating Φ in 
computer codes:
– Expand in terms of CSFs

• Most commonly GUGA (graphical unitary group 
approach)

• Made feasible by Shavitt, Schaefer
– Expand directly in terms of determinants

• Generally faster code
• More determinants to deal with
• Each determinant not spin-correct, but easily dealt with
• On balance, preferred method if code is well written
• GAMESS code written by Joe Ivanic, ~ as fast as any 

code

– Both available in GAMESS



Φ = AKΨK
K
∑

• AK are CI expansion coefficients
– Determined variationally using linear variation 

theory

 

< E >=< Φ | Ĥ |Φ >= AKAL < ΨK | Ĥ |ΨL >
K ,L
∑

∂ < E > /∂AK = 0,
HA = AE

• Solution of this (non-iterative) matrix 
eigenvalue equation yields 
– MCSCF energies EM for each electronic state
– CI coefficients AKM corresponding to state M



MCSCF METHOD

• Solution of MCSCF problem requires two 
sets of iterations to solve for two sets of 
coefficients
– For each set of CI coefficients AK, solve for LCAO 

coefficients Cµi (micro-iterations)

– For given set of Cµi, solve CI equations for new 
AK

– Continue until self-consistency



MCSCF METHOD

• Most common implementation is FORS 
(fully optimized reaction space)/CASSCF 
(complete active space) SCF
– Define active space in terms of orbitals and 

electrons
– Perform full CI within active space
– Very “chemical” approach
– Can be computationally demanding

• Ideal active space is full valence
• Not always feasible; upper limit is (16,16)

– Sometimes tricky to choose active space



• Two sets of coefficient optimizations
– CI coefficients optimized by solving linear 

variation secular equation
– Orbital optimization analogous to, but 

more complex than, simple HF solutions
• Need to optimize mixing between sets of 

subspaces:core, active, virtual
– Core-active
– Active-virtual
– Core-virtual

• Cf., HF high-spin open shell: Fock operators 
for

– Doubly occupied-singly occupied
– Doubly occupied-virtual
– Singly occupied virtual



• Orbital optimizations
– As for HF, each subspace invariant to 

internal mixing
– Only mixing between subspaces will change 

energy
– Exception: if MCSCF is not FORS/

CASSCF (CI is not Full CI), must also 
optimize active-active mixing:

• FORS simpler although more demanding 
computationally

• Non-FORS less robust, more difficult to 
converge

– Can think of optimization variables as 
rotation angles connecting orbitals in 
different subspaces (recall UHF)



• Orbital optimizations
– Taylor expansion of orbital gradient

• g(x) = E’(x) = g(x0) + g’(x0)·(x-x0) + ···
• g’ = E” = orbital hessian - second derivative of 

energy wrt orbital rotations x.  So, at optimal E
• E’(x) = 0 = E’(x0) + E”(X0)·(x-x0), ignoring higher 

order terms.  Rearranging,
• x = x0 - E’(x0)/E”(x0): Newton-Raphson equation
• In many dimensions, x is vector

– Completely analogous to geometry opt
– Exact calc of orbital hessian (FULLNR=.T.)

• Takes much more AO to MO 4-label integral 
transformation time (need 2 virtual indices as in 
[vo|vo], v = virtual, o = occupied

• More memory required



– As in geom opt, alternative to FULLNR is 
approximate updating of orbital hessian

• SOSCF=.T.: calc diagonal, guess off-diagonal
• Takes more iterations, but less time.
• Convergence less robust
• Easily can do 750 basis functions on workstation

– Alternatives are
• JACOBI: simple pairwise rotations, similar to 

SCFDM
• FOCAS: uses only orbital gradients, not even 

diagonal hessian elements as in SOSCF.  Each 
iteration is faster, but many more required

– Best strategy
• Start with SOSCF
• Use FULLNR as backup



CHOOSING ACTIVE SPACES

• Full valence active space
– Occupied orbitals are usually easy: choose 

all of them.
– Virtual orbitals not always easy:

• # of orbitals wanted = minimal valence basis set
• # of available virtuals generally much larger
• Virtuals are generally more diffuse and not easy 

to identify, especially with 
– Large basis sets
– Transition metals
– High symmetry



• Strategies for full valence active space
– MVOQ in $SCF

• Since virtual MOs are typically diffuse, ease of 
identification is improved if they are made more 
compact

• MVOQ = n removes n electrons from SCF calculation
• Generates a cation with +n charge - pulls orbitals in
• Easier to find correct virtuals for active space
• Improved convergence



• Strategies for full valence active space
– Localized orbitals (LMOs)

• Specify LOCAL=BOYS or RUDNBERG in $CONTRL
• Transforms orbitals to bonds, lone pairs
• Easier to understand occupied FV space
• Can use these to construct virtual part of FV active 

space
• Disadvantage: LMOs destroy symmetry, so the size of 

the problem (# of determinants) increases
• Partial solution: symmetry localized orbitals can be 

specified using SYMLOC=.T. in $LOCAL
– Localizes orbitals only within each irrep
– Sometimes not localized enough



• Strategies for less than FV active space
– Need to identify “chemically important” orbitals

• Orbitals directly involved in the chemical process
• Orbitals that may interact strongly with reacting orbitals

– Examples 
• Recall H2: 

– Active space includes H-H bonding orbital and H-H*
– FORS(2,2): 2 electrons in 2 orbitals

• Internal rotation in ethylene
– FV active space is (12,12)
– Minimum active space includes only CC σ,π,π∗,σ∗: (4,4)
– The two active spaces give ~same internal rotation barrier
– This active space cannot account for other processes, such as 

C-H bond cleavage



– More Examples
• Internal rotation in H2C=NH

– Start with analogous active space to ethylene: CN (4,4)
– Recognize that N lone pair will interact with π system as 

internal rotation takes place
– Add N lone pair to active space: (6,5), 6 electrons in 5 orbitals
– Also correctly describes dissociation to H2C + NH:  NH 

fragment will be correctly described by σ2πx
1πy

1

• Dissociation of H2C=O -> H2C + O
– Again, start with CO (4,4)
– Recognize O has two lone pairs, one 2s, one 2p
– Recognize that 2s lone pair has low energy & likely inactive
– Including 2p lone pair [(6,5) active space] ensures three 2p 

orbitals are treated equally in dissociated oxygen
– Isomerization to HCOH requires additional (4,4) from CH/OH



• Important to consider both reactant and 
product when choosing active space
– Ensures number of active electrons & orbitals are 

same
– Verifies reactant orbitals will be able to convert 

smoothly into product orbitals.
– Transition state orbitals can help make this 

transition smooth



– Consider isomerization of bicyclobutane to 1,3-
butadiene

• Superficially only need to break two bonds: FORS(4,4)
• But, to treat all peripheral bonds equally,  need all of 

them in active space: FORS(10,10)
– Now, consider isoelectronic NO dimer, N2O2



• Replace two bridge CH groups with nitrogens
• Replace two peripheral CH2 groups with oxygens
• Very high energy species: important HEDM compound
• First guess at good active space might be (10,10)
• But, one O lone pair on each O interacts strongly and 

must be included in active space for smooth PES
• Correct active space is (14,12) 
• Pay attention to orbitals along reaction path!



MULTI-REFERENCE DYNAMIC 
CORRELATION

• Multi-reference CI: MRCI
– CI from set of MCSCF configurations
– Most commonly stops at singles and doubles

• MR(SD)CI: Very demanding
• ~ impossible to go past 14 electrons in 14 orbitals

• Multi-reference perturbation theory
– Several flavors: CASPT2, MRMP2, GVVPT2
– Mostly second order (except CASPT3)
– More efficient than MRCI
– Not usually as accurate as MRCI



MULTI-REFERENCE DYNAMIC 
CORRELATION

• MRCI, MRPT generally not size-consistent
– +Q correction can make MRCI nearly size 

consistent
– MRPT developers like to say the method is 

“not quite size-consistent”
– Cf., GN methods are “slightly empirical”



STRATEGIES FOR INCONSISTENT 
ACTIVE SPACES

• Sometimes different parts of PES require 
different active spaces. Strategies
– Optimize geometries, obtain frequencies with 

separate active spaces
– Final MRPT or MRCI with composite active 

space
– If composite active space is too large

• Optimize geometries with separate active spaces
• Use MRPT with separate active spaces to correlate 

all electrons



NATURAL ORBITAL ANALYSIS
• Complex wavefunctions like MCSCF are very 

useful, but qualitative interpretations are 
important

• Two useful tools are 
– Natural orbitals
– Localized orbitals

• Natural orbitals introduced by Löwdin in 1955
– Diagonalize the 1st order density matrix ρ
– Simply the HF orbitals for HF theory



NATURAL ORBITAL ANALYSIS
– For fully variational methods (HF, MCSCF), 1st 

order density matrix is simply obtained from ΨΨ∗

– For other methods (MPn, CC, MRMP), must also 
calculate Hellmann-Feynman contribution: 
requires gradient of energy

– Eigenvectors of 1st order density matrix are 
natural orbitals

– Eigenvalues are natural orbital occupation 
numbers (NOON): λi



NATURAL ORBITAL ANALYSIS
– For RHF & ROHF, NOON are integers: 2,1,0
– For other methods,NOON are not integers

• Deviation from 2 (occupied orbitals) or 0 (virtual 
orbitals) indicate importance of configurational mixing

• For H2, λ1~2, λ2∼0 near Re; λ1, λ2 ∼1 near dissociation

– NOON are also good diagnostic for need for 
MCSCF zeroth order wavefunction

• NOON for single reference assume non-physical 
values when such methods start to break down.

– Examples



Table 2.  Natural orbital occupation  numbers  for  the 1A1 state of CH2 as a function of bond angle.  At
each angle, the aug-cc-pVTZ/MBPT2 optimized  bond  length  was  used  for all calculations.  The
optimum aug-cc-pVTZ/MBPT2 bond angle is 102.1 degrees.

Angle Method Principal Lone Pair non-Physical
    NOON      NOON

90.0 MRCI 1.896 0.077 ---
CASPT2 1.891 0.088 ---
CASSCF 1.912 0.085 ---
CCSD(T) 1.901 0.071 ---
MBPT2 1.961 0.015 -0.00003, 2.000012

102.1 MRCI 1.887 0.086 ---
CASPT2 1.885 0.094 ---
CASSCF 1.906 0.092 ---
CCSD(T) 1.894 0.077 ---
MBPT2 1.962 0.014 -0.00002, 2.000011

120.0  MRCI 1.862 0.112  ---
CASPT2 1.871 0.107 ---
CASSCF 1.894 0.105 ---
CCSD(T) 1.876 0.095 ---
MBPT2 1.961 0.015 -0.00003, 2.000009

150.0  MRCI 1.668 0.303 ---
CASPT2 1.771 0.203 ---
CASSCF 1.797 0.201 ---
CCSD(T) 1.772 0.196 ---
MBPT2 1.961 0.016 -0.00003, 2.000006

170.0  MRCI 1.104 0.865 ---
CASPT2 1.133 0.833 ---
CASSCF 1.154 0.846 ---
CCSD(T) 1.612 0.354 -0.00001
MBPT2 1.960 0.016 -0.00003, 2.000004

180.0  MRCI 0.984 0.984 ---
CASPT2 0.982 0.982 ---
CASSCF 1.000 1.000 ---
CCSD(T) 1.572 0.394 -0.00001
MBPT2 1.960 0.016 -0.00003, 2.000004



ble 1. Natural Orbital Occupation Numbers for the N2 Dissociation Curve

Natural Orbital Occupation Numbers
R (Å)               σ        π      π*        σ*
1.078   MCSCF     1.983    1.945  0.061     0.018
        MRCI 1.964    1.924  0.071     0.021
        CASPT2 1.966    1.924  0.069     0.022
        MBPT2 1.963    1.930  0.061     0.022
        CCSD(T) 1.956    1.922  0.071     0.021

1.2     MCSCF     1.974    1.921  0.086     0.028
        MRCI 1.955    1.899  0.096     0.031
        CASPT2 1.956    1.900  0.094     0.032
        MBPT2 1.952    1.907  0.085     0.034
        CCSD(T) 1.951    1.898  0.095     0.031

1.4     MCSCF     1.951    1.862  0.145     0.052
        MRCI 1.932    1.837  0.158     0.057
        CASPT2 1.931    1.840  0.154     0.059
        MBPT2 1.918    1.847  0.149     0.066
        CCSD(T) 1.929    1.841  0.151     0.055

1.6     MCSCF     1.911    1.755  0.251     0.094
        MRCI 1.892    1.730  0.264     0.098
        CASPT2 1.887    1.732  0.260     0.103
        MBPT2 1.857    1.749  0.254     0.123
        CCSD(T) 1.895    1.735  0.255     0.091

1.8     MCSCF     1.825    1.558  0.446     0.179
        MRCI 1.817    1.545  0.446     0.174
        CASPT2 1.800    1.536  0.454     0.190
        MBPT2 1.761    1.601  0.414     0.212
        CCSD(T) 1.826    1.486  0.500     0.162

2.0     MCSCF     1.663    1.325  0.677     0.341
        MRCI 1.675    1.329  0.660     0.316
        CASPT2 1.640    1.308  0.681     0.350
        MBPT2 1.623    1.394  0.640     0.342

  CCSD(T) 1.563    1.174  0.811     0.425

2.2     MCSCF     1.480    1.176  0.825     0.522
        MRCI 1.502    1.182  0.807     0.487
        CASPT2 1.463    1.165  0.824     0.527
        MBPT2 1.442    1.128  0.939     0.519

  CCSD(T) 1.417    2.658  -.709     0.571

2.4     MCSCF     1.339    1.101  0.899     0.662
        MRCI 1.359    1.104  0.885     0.631
        CASPT2 1.326    1.094  0.896     0.665
        CCSD(T) NONCONVERGENT



         Table 1. Natural Orbital Occupation Numbers for the
n Curve

Non-Physical NOONa

R (Å)
1.078   MCSCF
        MRCI
        CASPT2
        MBPT2 2.00001
        CCSD(T) 2.00001(2)

1.2     MCSCF
        MRCI
        CASPT2
        MBPT2 2.00001(2), -.00001
        CCSD(T) 2.00001(2)

1.4     MCSCF
        MRCI
        CASPT2
        MBPT2 2.00001(2), -.00003, -.00076(2)
        CCSD(T) 2.00002, 2.00001

1.6     MCSCF
        MRCI
        CASPT2
        MBPT2 2.00002(2), -.00018, -.00661(2)
        CCSD(T) 2.00002, 2.00001

1.8     MCSCF
        MRCI
        CASPT2
        MBPT2 2.00002(2), -.00124, -.01806(2)
        CCSD(T) 2.00002, 2.00001

2.0     MCSCF
        MRCI
        CASPT2
        MBPT2 2.00027, 2.00002, -.00756, -.03766

  CCSD(T) 2.00001(2), -.00005(2), -.00004(2)

2.2     MCSCF
        MRCI
        CASPT2
        MBPT2 2.02379, 2.00002, -.02571, -.07125



MCSCF/LMO/CI METHOD
• See Gordon&Cundari, Coord Chem Rev., 

147, 87-115 (1996)
– Choose active space for particular bond type
– Determine MCSCF LMOs within active space

• These are atom-like in nature 
– Perform CI within LMO MCSCF space
– Applied to analyze TM-MG double bonds

• TM=transition metal (or Tom)
• MG=main group (or Mark Gordon)



• Possible resonance contributors

– Straight line = covalent structure, electrons shared
– Arrow = ionic structure, both electrons on atom at 

base of arrow
– Lower arrow = σ, upper arrow = π 



Table 1.  Percent contributors of covalent and ionic resonance
structures in H2M=EH2 compounds.  Nucleophilic structures are
defined as those with M+E- ionicity, electrophilic means M-E+

        --- Ti ---    --- Zr ---    --- Nb ---    --- Ta ---
         Si    C       Si    C       Si    C       Si    C
 A     44.6  36.5    40.0  32.8    41.5  37.4    39.7  34.1
 
 B      3.8   2.6     4.7   2.9     7.6   4.5     6.5   3.9

 C      1.9   9.7     5.5  14.1     4.8  11.7     6.3  13.4

 D     34.6  36.2    31.5  30.9    24.1  26.3    26.5  28.2

 E      8.2   7.3     8.6   6.8    13.2   8.1    11.0   7.6

 F      0.3   2.6     1.6   6.3     0.9   3.7     1.5   5.5

 G      5.4   2.6     5.7   3.1     5.3   4.4     5.5   3.7

 H      0.2   0.1     0.4   0.1     0.5   0.2     0.5   0.2

 I      0.8   2.3     2.0   3.1     1.9   3.5     2.3   3.3

Neut.   53.6  46.1    50.6  42.7    56.0  49.0    53.0  45.0

Nucl.   36.8  48.5    38.6  51.4    29.8  41.7    35.3  47.1

Elec.    9.4   5.3    10.8   6.1    13.4   9.1    12.5   7.8

– This method 1st showed σ ylide structure 
D is an important resonance contributor 



NEW DEVELOPMENTS
• ORMAS (Joe Ivanic)

– Occupation restricted multiple active spaces
– Method for expanding size of MCSCF

• Identify several smaller subspaces

• Eliminating deadwood from MCSCF, CI
– Ruedenberg, Ivanic, Bytautas
– Approaches exact Full CI

• Parallel MCSCF, CI



 $CONTRL SCFTYP=MCSCF RUNTYP=ENERGY NZVAR=3 COORD=ZMT $END
 $SYSTEM TIMLIM=5 MEMORY=300000 $END
 $BASIS GBASIS=STO NGAUSS=3  $END
 $DATA
          Methylene...1-A-1 state...MCSCF/STO-3G
          Cnv  2
          
          C
          H 1 rCH
          H 1 rCH 2 aHOH
          
          rCH=1.09
          aHOH=130.0
 $END
 $GUESS GUESS=MOREAD  NORB=7  $END
 $MCSCF CISTEP=GUGA  $END
 $DRT   NMCC=3 NDOC=1 NVAL=1  FORS=.T.  GROUP=C2V $END
--- RHF ORBITALS --- GENERATED AT 21:48:01 10-13-1999     
          Methylene...1-A-1 state...MCSCF/STO-2G                                
E(RHF)=      -38.3704886597, E(NUC)=    6.1450312399,    8 ITERS
 $VEC
 1  1 9.93050334E-01 3.06416919E-02 0.00000000E+00 0.00000000E+00 7.13949414E-03
 1  2-7.56284556E-03-7.56284556E-03
 2  1-2.13664212E-01 6.49200772E-01 0.00000000E+00 0.00000000E+00 1.82338446E-01
 2  2 2.71289288E-01 2.71289288E-01
 3  1 0.00000000E+00 0.00000000E+00 5.42052798E-01 0.00000000E+00 0.00000000E+00
 3  2-4.66619722E-01 4.66619722E-01
 4  1 1.43219334E-01-6.53818237E-01 0.00000000E+00 0.00000000E+00 7.44709913E-01
 4  2 2.24175347E-01 2.24175347E-01
 5  1 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000E+00 0.00000000E+00
 5  2 0.00000000E+00 0.00000000E+00
 6  1 0.00000000E+00 0.00000000E+00 1.08196576E+00 0.00000000E+00 0.00000000E+00
 6  2 8.37855220E-01-8.37855220E-01
 7  1-1.69243066E-01 1.08779602E+00 0.00000000E+00 0.00000000E+00 8.71412547E-01
 7  2-9.04841898E-01-9.04841898E-01
  $END



! EXAM06.
!    1-A-1 CH2    MCSCF methylene geometry optimization.
!
!    At the initial geometry:
!    The initial energy is -37.187342653,
!    the FINAL E= -37.2562020559 after 14 iterations,
!    the RMS gradient is 0.0256396.
!
!    After 4 steps,
!    FINAL E= -37.2581791686, RMS gradient=0.0000013,
!    r(CH)=1.1243359, ang(HCH)=98.8171674
!
 $CONTRL SCFTYP=MCSCF RUNTYP=OPTIMIZE NZVAR=3 COORD=ZMT 
$END
 $SYSTEM TIMLIM=5 MEMORY=300000 $END
 $BASIS GBASIS=STO NGAUSS=2  $END
 $DATA
          Methylene...1-A-1 state...MCSCF/STO-2G
          Cnv  2
          
          C
          H 1 rCH
          H 1 rCH 2 aHOH
          
          rCH=1.09
          aHOH=99.0
  $END
  $ZMAT  ZMAT(1)=1,1,2,   1,1,3,   2,2,1,3  $END
!
! Normally one starts a MCSCF run with converged SCF orbitals
$GUESS  GUESS=HUCKEL $END
!
! two active electrons in two active orbitals.
! must find at least two roots since ground state is 3-B-1
!
 $DET    NCORE=3 NACT=2 NELS=2 NSTATE=2 $END


